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Summary Introduction

Hereditary nonpolyposis colorectal cancer (HNPCC) is a
Hereditary nonpolyposis colorectal cancer (HNPCC) iscommon autosomal dominant cancer-susceptibility condi-
the most common genetic condition that determines sus-tion characterized by early onset colorectal cancer. Germ-
ceptibility to colorectal tumorigenesis. It is characterizedline mutations in one of four DNA mismatch repair (MMR)
by an autosomal dominant pattern of inheritance, a vari-genes, hMSH2, hMLH1, hPMS1, or hPMS2, are known
able age at onset, and a high degree of penetrance. More-to cause HNPCC. Although many mutations in these genes
over, tumors in other organs—including the endome-have been found in HNPCC kindreds complying with the
trium, stomach, small intestine, hepatobiliary system,so-called Amsterdam criteria, little is known about the
kidney, ureter, and ovary—also are observed frequentlyinvolvement of these genes in families not satisfying these
in HNPCC patients (Lynch et al. 1993; Watson andcriteria but showing clear-cut familial clustering of colo-
Lynch 1993).rectal cancer and other cancers. Here, we applied denaturing

Recently, HNPCC has been shown to be due to germ-gradient-gel electrophoresis to screen for hMSH2 and
line mutations in one of four DNA mismatch repairhMLH1 mutations in two sets of HNPCC families, one set
(MMR) genes, hMSH2 (Fishel et al. 1993; Leach et al.comprising families strictly complying with the Amsterdam
1993), hMLH1 (Papadopoulos et al. 1994), or hPMS1criteria and another set in which at least one of the criteria
or hPMS2 (Nicolaides et al. 1994). The majority of mu-was not satisfied. Interestingly, hMSH2 and hMLH1 muta-
tations have been detected in hMSH2 and hMLH1,tions were found in 49% of the kindreds fully complying
whereas only three germ-line mutations have been de-with the Amsterdam criteria, whereas a disease-causing mu-
scribed so far in hPMS1 and hPMS2 (Nicolaides et al.tation could be identified in only 8% of the families in
1994). Inactivation of MMR genes leads to genomicwhich the criteria were not satisfied fully. In correspondence
instability characterized by the expansion or the contrac-with these findings, 4 of 6 colorectal tumors from patients
tion of short repeated DNA sequences (i.e., microsatel-belonging to kindreds meeting the criteria showed microsat-
lites) (Aaltonen et al. 1993; Ionov et al. 1993). This formellite instability, whereas only 3 of 11 tumors from the other
of instability, designated as ‘‘microsatellite instability’’set of families demonstrated this instability. Although the
(‘‘MIN’’) or as ‘‘replication error’’ (‘‘RER’’), is thoughtnumber of tumors included in the study admittedly is small,
to result in a rapid accumulation of somatic mutations inthe frequencies of mutations in the MMR genes show obvi-
different oncogenes and tumor suppressor genes, whichous differences between the two clinical sets of families.
play crucial roles in tumor initiation and progressionThese results also emphasize the practical importance of
(Lazar et al. 1994; Markowitz et al. 1995; Parsons etthe Amsterdam criteria, which provide a valid clinical subdi-
al. 1995). Thus, tumor progression is believed to bevision between families, on the basis of their chance of
accelerated in HNPCC patients, since they manifest co-carrying an hMSH2 or an hMLH1 mutation, and which
lorectal cancer more than two decades earlier than thosebear important consequences for genetic testing and coun-
in the general population. The same type of genetic in-seling and for the management of colorectal cancer families.
stability has been observed, in low but significant per-
centages, in different types of nonfamilial cases of tu-
mors—including colorectal cancer (Thibodeau et al.Received February 21, 1997; accepted for publication May 21, 1997.
1993; Aaltonen et al. 1994), pancreatic and gastric can-Address for correspondence and reprints: Dr. Riccardo Fodde,

MGC-Department of Human Genetics, Sylvius Laboratories, Univer- cer (Han et al. 1993), endometrial carcinomas (Burks et
sity of Leiden, Wassenaarseweg 72, P.O. Box 9503, 2300 RA Leiden, al. 1994; Risinger et al. 1994), breast cancer and ovarian
The Netherlands. E-mail: fodde@ruly46.medfac.leidenuniv.nl

cancer, and soft-tissue sarcomas (Wooster et al. 1994)—� 1997 by The American Society of Human Genetics. All rights reserved.
0002-9297/97/6102-0011$02.00 suggesting that the same MMR genes responsible for
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Table 1HNPCC also may play an important role in the patho-
genesis of common sporadic neoplasia.

Clinical Phenotypes of the 39 AMS0 Families
Studies in different populations demonstrate that mu-

tations in hMSH2 and in hMLH1 occur in an approxi- NO. OF

MUTATIONSmately equal proportion (Ç25% each) of HNPCC fami-
FOUND INlies (Han et al. 1995; Kolodner et al. 1995; Wijnen et

NO. OFal. 1995, 1996; Liu et al. 1996), with the exception of
PHENOTYPE FAMILIES hMSH2 hMLH1

the Finnish population, in which hMLH1 mutations
were found in 83% of the HNPCC kindreds and hMSH2 All colorectal cancer patients

diagnosed at ú50 years of age 6 . . . . . .mutations in only 3% (Nyström-Lahti et al. 1996).
Only 2 colorectal cancer patients 11 1a . . .However, this exceptionally high involvement of
Only 1 generation affected 2 1 . . .hMLH1 is a reflection of the fact that two hMLH1
3 colorectal cancer patients not first-

mutant alleles are common in Finnish HNPCC kindreds, degree relatives 6 . . . . . .
owing to founder effects (Nyström-Lahti et al. 1996). More than one criterion not satisfied 14 . . . 1b

To date, most of the HNPCC kindreds employed for
a Germ-line mutation found in the hMSH2 gene in an HNPCC kin-linkage and mutation analysis satisfy the Amsterdam

dred characterized by two patients with colorectal cancer and onecriteria, defined by the International Collaborative
other individual with endometrial cancer and one with ovarian cancer.

Group on HNPCC; that is, (1) at least three relatives in b Germ-line mutation identified in the hMLH1 gene in a patient
two successive generations, one of whom is the first- diagnosed with colorectal cancer at 42 years of age. Unfortunately,

no family history was available, since the rest of the family currentlydegree relative of the other two, are affected with histo-
is residing in Indonesia.logically verified colorectal adenocarcinoma; (2) at least

one of these relatives is diagnosed before 50 years of
age; and (3) familial adenomatous polyposis is absent
(either clinically or by linkage) in all of the at-risk family generations were investigated. No evidence of founder
members (Vasen et al. 1991). Because of the extreme effects was found. Information had been collected on the
stringency of these criteria, it is not clear whether the type and site of the cancer, the age at diagnosis, the nature
same MMR genes, in particular hMSH2 and hMLH1, of therapeutic intervention, and the pathology and histo-
also are responsible for HNPCC in kindreds not comply- pathology of the individual tumors, for each of the af-
ing with the Amsterdam criteria but clearly showing fected persons. Also, the personal data and the outcome
familial clustering of colorectal cancer and other can- of clinical screening, of the investigated at-risk relatives,
cers. have been documented carefully. Also, 23 Norwegian

In this study, we have analyzed the hMSH2 and families, three Italian families, one Danish family, and a
hMLH1 genes, by use of GC-clamped denaturing gradi- Czech family have been included. Eighty-six of these 125
ent-gel electrophoresis (DGGE) (Myers et al. 1987; families are AMS/. Of the 39 AMS0 kindreds, 25 fulfill
Fodde and Losekoot 1994), in 125 unrelated kindreds the Amsterdam criteria, with one exception, whereas in
with clustering of colorectal cancer and other cancers, the remaining 14 kindreds more than one of the criteria
86 of which fully comply with the Amsterdam criteria were not fulfilled (table 1).
(AMS/). In the rest of the families, at least one of the

DNA Isolationcriteria is not satisfied (AMS0). Tumor DNA that was
available from 17 of the kindreds was investigated for Genomic DNA was isolated from whole blood, as

described elsewhere (Fodde et al. 1992). DNA from for-MIN, by the screening of mono-, di-, tri-, and tetranucle-
otide repeat markers, for the examination of the involve- malin-fixed, paraffin-embedded colorectal adenocarci-

nomas was isolated as follows. Approximately 10 10-ment of DNA MMR genes in the pathogenesis of these
tumors. mm paraffin sections were deparaffinized with Paraclear

(Earth Safe Industries) and were washed with 100%
ethanol. The tissue was resuspended in a 1-ml extractionPatients, Material, and Methods
buffer (10 mM Tris-HCl, pH 8.0, 100 mM NaCl, 25

Patients mM EDTA, 0.5% SDS, and 300 mg proteinase k/ml)
and was incubated at 55�C for 72 h. Two additionalOf a total of 125 kindreds employed in this study, 34

have been described in previous studies (Wijnen et al. 200-mg aliquots of proteinase k were added, with incu-
bation intervals of 24 h. After phenol/chloroform and1995, 1996). Ninety-seven of these families had been

recruited from various clinical centers in the Netherlands, chloroform extraction, to remove the cellular proteins,
the DNA was precipitated with 250 ml 7.5-M NH4Ac,mainly through the Netherlands Foundation for the De-

tection of Hereditary Tumors. In order to exclude the 20 mg glycogen, and 1 ml 100% ethanol. The precipitate
was dissolved in 150 ml TE04 (10 mM Tris-HCl, pHpresence of a founder effect, pedigrees were constructed

by use of a genealogical approach for which at least three 8.0, and 0.1 mM EDTA).
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DNA Amplification nucleotide repeats (FABP2 and DRPLA), and at two
tetranucleotide repeats (D4S243 and D4S169). The re-Amplifications of the hMSH2 and hMLH1 genes were
peat markers were amplified from both normal-DNAperformed in a 50-ml volume containing 10 mM Tris-
and tumor-DNA samples and were resolved by poly-HCl, pH 8.9, 50 mM KCl, 2.5 mM MgCl2 (with the
acrylamide-gel electrophoresis, in accordance with con-exceptions of 1.5 mM for hMSH2 exon 1, 3.5 mM for
ventional methodologies (Aaltonen et al. 1993). The in-hMSH2 exons 2 and 4, and 5 mM for hMLH1 exon 4),
stability of a given marker was defined by the200 mg BSA/ml, 0.01% gelatin, 0.2 mM of each dNTP,
appearance of additional alleles in the tumor DNA,10% glycerol, 10 pmol of each primer, and 1 unit Taq
when compared with the corresponding normal DNA.polymerase. The reaction was subjected to 35 PCR cy-
Tumors were considered to exhibit genomic instability,cles (60 s at 94�C, 90 s at 55�C or at 58�C, and 120 s
or to be RER positive (RER/), whenever three or moreat 72�C). The primer sets were designed to encompass
of the above repeat markers showed novel bands in thethe entire exon, including both intron-exon boundaries,
tumor DNA that were not present in the matched nor-with the exceptions of hMSH2 exons 1, 2, 4, 5, 7, 13,
mal DNA.14, and 15 and of hMLH1 exons 2 and 12, for which

either the nature of the intronic sequences or the limited
availability of sequence information did not allow Results and Discussion
DGGE analysis of one of the two splice sites (Wijnen et

The general strategy for the detection of mutationsal. 1995, 1996).
responsible for HNPCC was amplification of each of

DGGE the 16 hMSH2 exons and the 19 hMLH1 exons, for one
affected individual per family, and the analysis of theFor optimal DGGE conditions, DNA melting–behav-
products by GC-clamped DGGE. Exons exhibiting al-ior simulations were performed with the MELT87 pro-
tered migration patterns were sequenced, to determinegram, developed and kindly provided by Dr. L. Lerman
the molecular nature of the observed variation. When(Lerman and Silverstein 1987). The position of the GC-
sequence variants were detected, the investigations wererich sequence, whether at the 5� end or at the 3� end
extended to the rest of the family, to verify segregationof each of the primer pairs, and the optimal ranges of
of the nucleotide change with the disease phenotype.denaturant used for DGGE of the individual exons were

Following the above-described strategy, we extendeddescribed elsewhere (Wijnen et al. 1995, 1996). The
the previously reported analysis of hMSH2 and hMLH1general procedure for DGGE analysis was described by
in 34 AMS/ HNPCC kindreds (Wijnen et al 1995,Fodde et al. (1992).
1996) to an additional 91 families, 52 of which comply

Sequence Analysis with the same clinical criteria. A total of 37 different
mutations have been identified in 45 unrelated kindreds,DNA fragments that displayed an abnormal DGGE
of which 19 have mutations in hMSH2 and 26 inpattern were analyzed by solid-phase sequencing. PCR
hMLH1 (table 2). The mutations in hMSH2 are dis-products were purified with Easyprep and the PCR-
persed along the coding region of the gene, with theProduct Prep Kit (Pharmacia), by following of the manu-
exceptions of exons 1 and 16, in which, to date, nofacturer’s instructions. Then, strand separation of the
mutations have been found. Moreover, 3 mutations, inPCR product was obtained by use of streptavidin-coated
exons 5, 8, and 12, were observed more frequently (tablemagnetic beads M280 (Dynal). Sequencing reactions
2). The hMLH1 mutations also were scattered through-were performed in accordance with the procedures de-
out the entire coding region of the gene, with the excep-scribed by Sanger et al. (1977), by use of fluorescein-
tion of exon 12, in which no mutation was found. Inter-isothiocyanate–labeled Universal M13 primer (Auto-
estingly, a 3� mutation-cluster region, spanning exonsread Kit; Pharmacia), and were run on the automated
15–16, accounts for 10 (38%) of the 26 hMLH1-muta-laser fluorescent–DNA sequencing apparatus (A.L.F.;
tion kindreds described in this study (table 2). Five muta-Pharmacia), in 6% polyacrylamide and 7.0 M urea, at
tions, 3 in hMSH2 and 2 in hMLH1, were observed in1,500 V, 44 mA, and 40 W, at 45�C (laser power 4mW)
ú1 HNPCC kindred (table 2). One of these mutations,for 6 h.
the in-frame deletion of a lysine residue, in exon 16 of

MIN hMLH1, represents the most frequently observed muta-
tion in this study, having been found in 4 kindreds.Genomic instability was investigated in paired normal

DNA (from blood lymphocytes) and tumor DNA (from Genealogical and haplotype studies failed to find any
relationship between 3 of these kindreds, ruling out thecolorectal adenocarcinomas), from 24 patients from 17

HNPCC families, by screening for repeat-number varia- possibility of a founder effect.
Of particular interest is the remarkable difference ob-tions at the poly-A repeat BAT40, at seven dinucleotide

repeats (CA repeats D1S102, D2S123, D3S1265, served in the involvement of hMSH2 and hMLH1, be-
tween the HNPCC kindreds fully complying with andD7S440, D14S51, D19S210, and D22S257), at two tri-
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Table 2

MMR-Gene Alterations in HNPCC Families

Gene and Family Codon(s) Nucleotide Changea,b Nature of the Mutationa

hMSH2:
NLB-376 Intron 1 aagGAGraggGAG arg substitution at splice acceptor site
NLB-600 76 (exon 2) CAGAGTrCAGT AG deletion, frameshift; termination at codon 80
NL-10c 288 (exon 5) CAGrTAG CrT substitution, GlnrSTOP
NL-39 288 (exon 5) CAGrTAG CrT substitution, GlnrSTOP
NL-38 305 (exon 5) GCArACA GrA substitution, AlarThr
N-HS3 Intron 5 AGgtarAGgtt art substitution at splice donor site
NL-21c 339–340 (exon 6) CAAAGArCAGA AA deletion, frameshift; termination at codon 343
NL-7c 380–381 (exon 7) GATTTArGATTA T deletion, frameshift; termination at codon 387
NL-23c 429 (exon 8) CAGrTAG CrT substitution, GlnrSTOP
NL-220 429 (exon 8) CAGrTAG CrT substitution, GlnrSTOP
I-219c 481–482 (exon 9) TTAAGrTTAAAG A insertion, frameshift; termination at codon 487
NLB-172 Intron 9 aagGCraggGC arg substitution at splice acceptor site
NL-13c 532 (exon 10) AAAGTCrAAAGGTC G insertion, frameshift; termination at codon 535
NL-221 566 (exon 11) AAAAATrAAAT AA deletion, frameshift; termination at codon 570
N-534 596 (exon 12) CTCAATGATrCTCGAT AAT (Asn) in-frame deletion
N-554 596 (exon 12) CTCAATGATrCTCGAT AAT (Asn) in-frame deletion
N-414 670 (exon 13) CGArTGA CrT substitution, ArgrSTOP
NL-203c 782–783 (exon 14) ACCCATrACCAT C deletion, frameshift; termination at codon 811
NL-57 834 (exon 15) GCTrACT gra substitution, AlarThr

hMLH1:
NL-205 6–11 (exon 1) Deletion of 17 nucleotides Out-of-frame deletion, termination at codon 29
NLB-1069 6–11 (exon 1) Deletion of 17 nucleotides Out-of-frame deletion, termination at codon 29
NLB-100 34 (exon 1) GAGATGrGATG GA deletion, frameshift; termination at codon 36
N-498 62 (exon 2) CAArAAA CrA substitution, GlnrLys
N-2104 64 (exon 2) AATrAGT ArG substitution, AsnrSer
NL-20c 226 (exon 8) TCGgtarTCAgta GrA substitution at splice donor site
NL-27c 226 (exon 8) TCGgtarTCGta G or g deletion at splice donor site
NLB-296 Intron 8 TCGgtatgrTCGgtattg t insertion at splice donor site
NL-6c Intron 9 tagATCrtacATC grc substitution at splice acceptor site
NL-30 269 (exon 10) TCArTGA CrG substitution, SerrSTOP
NL-37 295 (exon 10) CAGgtrCGGgt ArG substitution at splice donor site
NL-24c 307–308 (exon 11) TGCACCrTGCGCACC CG insertion, frameshift; termination at codon 367
CH-1 496–497 (exon 13) ACCCCCCGGrACCCCCCCGG C insertion, frameshift; termination at codon 502
NL-25c Intron 15 TCGgtarTCGata gra substitution at splice donor site
D-105c Intron 15 tagGAGrttgGAG art substitution at splice acceptor site
NL-28c 593–594 (exon 16) CAGAGAGTGrCAGAGTG AG deletion, frameshift; termination at codon 608
NL-29c 616–618 (exon 16) AAGAAGAAGrAAGAAG AAG (Lys) in-frame deletion
I-202c 616–618 (exon 16) AAGAAGAAGrAAGAAG AAG (Lys) in-frame deletion
NL-40 616–618 (exon 16) AAGAAGAAGrAAGAAG AAG (Lys) in-frame deletion
NL-59 616–618 (exon 16) AAGAAGAAGrAAGAAG AAG (Lys) in-frame deletion
NLB-526 618 (exon 16) AAGAAGAAGrAAGAAGGCG AArGC substitution, LysrAla
NL-4c 632 (exon 16) GAGgtgrGAAgtg GrA substitution at splice donor site
NL-204c 632 (exon 16) GAGgtgrGAAgtg GrA substitution at splice donor site
NL-56 659 (exon 17) CGArCCA GrC substitution, ArgrPro
NL-9c Intron 18 AGgtarAGata gra substitution at splice donor site
NLB-35 Intron 18 AGgtarAGata gra substitution at splice donor site

a Uppercase letters represent exonic nucleotides, and lowercase letters represent intronic nucleotides.
b Nucleotides involved in the substitution/deletion events are underlined.
c Previously described in the studies by Wijnen et al. (1995, 1996).

those not complying with the Amsterdam criteria. Muta- tumor initiation and/or progression, in the patients be-
longing to these two sets of families. Similar observa-tions in these genes could be detected in 42 (49%) of

the 86 AMS/ families and in only 3 (8%) of the 39 tions were reported in Finnish HNPCC families (Ny-
ström-Lahti et al. 1996) and in American and in Germankindreds in which one or more of the criteria were not

fulfilled. This highly significant difference (P Å 9 1 1006) HNPCC families (Moslein et al. 1996). In Finland, Ny-
ström-Lahti et al. (1996) found hMSH2 and hMLH1suggests that different genetic factors are responsible for
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Table 3

MIN in Tumors

RESULTS OF MIN SCREENING, BY USE OFa

AMS MUTATED Mononucleotide Dinucleotide Trinucleotide Tetranucleotide
FAMILY STATUS GENE Repeat Repeat Repeat Repeat

NL-1 0 . . . / / / /
NL-22 0 . . . na / na na
NL-27 / hMLH1 na / / /
NL-30 / hMLH1 na 0 0 0
NL-38 / hMSH2 0 0 0 0
NL-203 / hMSH2 na / / 0
NL-205 / hMLH1 na / 0 /
NL-206 0 . . . na 0 0 0
NL-208 0 . . . na 0 0 0
NL-210 0 . . . na 0 0 na
NL-211 0 . . . 0 0 0 0
NL216 0 . . . 0 0 0 0
NL217 / . . . / / / /
NL-218 0 . . . 0 0 0 0
NL-223 0 . . . / / / /
NLB-532 0 . . . 0 0 0 0
NLB-722 0 . . . 0 0 0 0

a The plus (/) sign indicates that the tumor DNA displayed additional alleles other than those observed
in the paired normal DNA. The minus (0) sign indicates no difference between tumor DNA and normal
DNA. ‘‘na’’ (‘‘no amplification’’) indicates that the tumor-DNA samples did not yield any PCR product,
possibly owing to the presence of impurities in the DNA preparations.

germ-line mutations in 30 (86%) of their 35 AMS/ families not fulfilling the Amsterdam criteria. These fam-
ilies failed to meet these strict criteria because of (1) thefamilies and in only 6 (30%) of the 20 AMS0 families.

However, two hMLH1 mutations are very common noninclusion of endometrial and ovarian cancers, on a
par with colorectal cancer, in the Amsterdam criteria,among the Finnish kindreds, owing to founder effects

(Nyström-Lahti et al. 1996). When a correction for for family N-534; (2) the occurrence of affected individ-
uals in only one generation, in family NLB-600; and (3)founder effects is incorporated, Nyström-Lahti et al.’s

(1996) data show four different mutations in 9 (44%) the unavailability of the history of the family that resides
in Indonesia (family NLB-296) (tables 1 and 2).AMS/ families and four in 18 (22%) AMS0 families.

In the pooled American families and German families, In our study, 80 HNPCC kindreds, of which 44 are
AMS/ and 36 are AMS0, revealed no mutation in ei-Moslein et al. (1996) described comparable propor-

tions—that is, mutations in 9 (45%) of 20 AMS/ fami- ther hMSH2 or hMLH1. To verify the involvement of
DNA MMR genes, in the tumor pathogenesis in thelies and in only 4 (15%) of 26 AMS0 families.

Three germ-line mutations were found in HNPCC AMS0 families, we analyzed, for MIN, the tumor DNA

Table 4

No. of Mutations, in hMSH2 and hMLH1, Found in the Dutch and the European AMS" and AMSÏ HNPCC Families

AMS/ FAMILIES AMS0 FAMILIES

No. (%) of Mutations No. (%) of Mutations

FAMILY SUBSET n hMSH2 hMLH1 Total n hMSH2 hMLH1 Total

Dutch 69 13 (19) 20 (29) 33 (48) 28 1 (4) 1 (4) 2 (7)
Europeana 17 4 (24) 5 (29) 9 (53) 11 1 (9) . . . 1 (9)

Total 86 17 (20) 25 (29) 42 (49) 39 2 (5) 1 (3) 3 (8)

a Included 23 Norwegian families, three Italian families, one Danish family, and one Czech family.
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